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Columbia	University	in	the	City	of	New	York

Ivy	League	Research	University
Main	Campus	located	in	Manhattan,	Morningside	Heights

School	of	Engineering	and	Applied	Science
~	140	faculty	members
~	2,000	graduate	students
~	1,500	undergraduate	students

Department	of	Electrical	Engineering
� 36	faculty	members
� Only	one	working	in	power
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MPLab

Motor	Drives	and	Power	Electronics	Laboratory	(MPLab)
� Founded	2016
� Located	on	Columbia	main	campus

People
� Laboratory	members

4	PhD, 1	MSc		students
� Co-supervision

3	PhD	students
1	post-doc,	1	research	associate

� Project-based members

Matthias	Preindl (PI)
matthias.preindl@columbia.edu
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MPLab Research Matthias	Preindl (PI)
matthias.preindl@columbia.edu

Research
� Advanced	control

� Optimal	control
� Nonlinear	control
� Observers

� Power	electronics
�Wide-bandgap
� High-frequency	(MHz)

Applications
� Electric	Vehicle	Drivetrains

� Traction	drive	systems
� Energy	storage	systems
� Power	converters

Graphic:	tesla.com
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Optimization-based	Control	and	Estimation
Introduction
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MPC	Benefits
• Nonlinear	Systems
• Multi-input	multi-output
• Constraint	handling

MPC	Challenges
• “Classical”	MPC	stability	theorem	requires	

specific	cost	function,	prediction	horizon,	and	terminal	constraint
• Convexity	and	computation	efficiency
• Model	accuracy

Introduction
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Virtual-flux	model (𝜆"#, 𝜆%&)
• Any	multiphase	AFE	and	sinusoidal	

machines:	IPMSM,	SPMSM,	RSM,	IM	
• No	parameters	in	dynamic	model

MPC	schemes
• FCS	preferable	at	low	𝑓( à needs	to	detect ripple
• CCS	preferable	at	high	𝑓( à ripple	is	handed	off	to	modulator

Tendency	to	use	unconventional	cost	functions
• Incompatibility	with	MPC	theory:	stability	and	robustness

Observations
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• Single	block	is	not	be	best	for	everything

• Stability	and	robustness	concepts	for	any	cost	function

• MPC	concepts	are	applicable	to	estimation

• MPC	enables	new	power	electronic	topologies

Summary
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Model	Predictive	Torque	Control	using	Virtual	Fluxes
Concept
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Layout

Virtual	flux	𝝀 space
• Compute	𝜆 with	static	(nonlinear)	map
• Linear	dynamic	model	without	parameters
• Prediction	is	parameter	independent

Setpoint calculation
• Separate	dynamic	control	from	choosing	setponts
• Nonlinear	map:	torque	à current	(or	flux)

Regulation	problem:	𝒙 → 𝟎
• Tracking	à regulation	problem
• Combine	feedback	and	feedworward control
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Model	Predictive	Torque	Control	using	Virtual	Fluxes
Constrained	MTPA

M.	Preindl,	S.	Bolognani „Optimal	State	Ref.	Computation with Constrained MTPA	Criterion for PM	Drives,“	TPEL,	2015
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Model

Stator	dynamics

Current-flux	map

Torque	equation
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Constraints

Current	constraint

Voltage	constraint

Flux	constraint

Speed	constraint
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Constrained	MTPA

Definition:	optimal	states

Nonconvex	(NP-hard	in	general),	possibly	infeasible	à split	into	subproblems
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Constrained	MTPA	– Example:	Base	Mode
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Constrained	MTPA	– Example:	Constant	Power	Mode
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Constrained	MTPA	– Example:	Reduced	Power	Mode
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Constrained	MTPA	– Tm and	Ti definitions

Definition:	Maximum	Torque

• Problems	are	feasible;	
• Still	non-convex	but	can	be	solved	efficiently	due	to	low	dimension

Definition:	Intersection	Torque
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Constrained	MTPA	– Tm and	Ti with	infinite	max.	speed
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Constrained	MTPA	– Tm and	Ti with	finite	max.	speed
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Constrained	MTPA	– Optimal	Reference	Computation

Find	maximum	torque	Tm

Find	intersection	torque	Ti

Find	optimal	states
• Locate	trajectory	(MTPA,	∂Λ)	with	Tm,	Ti
• Compute	idq,ref (or	λdq,ref)
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Constrained	MTPA	– Example:	Low	and	High	Speed	Operation

Find	maximum	torque

Transient	operation	(speed	step)
standstill	to	field-weakening

FCS-MPC
operation	points

CCS-MPC
operation	points
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Constrained	MTPA	– Model	Accuracy

Rated	L and	ψdq are	typically	suboptimal



24 | Transcending	Disciplines,	Transforming	Lives,	Educating	Leaders

Constrained	MTPA	– Model	Refinement

Approach
• Optimize	model	locally (area	enclosed	by	MTPA,	∂Λ,	and	∂I)
• Using	well	known	operating	points	(rated	operation	point,	short	circ.	current)
Parameters Mρ=K

• Least	square	solution:	ρ=M+K	à not	a	general	model,	e.g.	𝑝 ∉ ℕ
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Constrained	MTPA	– Example:	Model	Refinement

Model	(solid)	and	measured	(dashed)	characteristics
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Model	Predictive	Torque	Control	using	Virtual	Fluxes
Transient	Behavior

M.	Preindl „Robust	Control	Invariant	Sets	and Lyapunov-based MPC for IPM	Sync.	Motor	Drives,“	TIE,	2016
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Transient	Behavior	– Dynamic	model

Stator	dynamic	equation

Where																																				and	
Transform	tracking	into	regulation	problem

with	control	error																																			and	input	
The	terminal	voltage
• Feedback	controller					:	MPC
• Feedforward	controller				:	adjustment	for	rotation
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Transient	Behavior	– Terminal	Voltage	and	Input	constraints

CCS	and	FCS	input	constraints	(Note:	 does	not	contain	origin)
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Transient	Behavior	– FCS	Candidate	Lyapunov Function
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Transient	Behavior	– Preset	and	Robust	Control	Invariance

Preset	applied	to	sublevel	set	Ω2
The	preset	𝑂 Ω2 is	the	set	of	all	states	𝑥 ∈ ℝ7
that	can	be	driven	to	the	Ω2 by	an	admissible	control	input	𝑢 ∈ 𝑈

𝑂: Ω2 = 𝑥 ∈ ℝ7	 	∃𝑢 ∈ 𝑈 ∶ x + u ∈ Ω2}

Robust	control	invariance
The	set	Ω2 is	said	to	be	robust	control	invariant	iff Ω2 ⊆ 𝑂 Ω2 − 𝐵,

where	B	is	an	arbitrarily	small	ball	with	radius	b

Iff Ω2	is	robust	control	invariant	∃𝑢 ∈ 𝑈	s.t. Γ 𝑥F − Γ 𝑥 < −b.
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Transient	Behavior	– Control	Invariance

Using	FCS,	the	sublevel	Ω2 is	(robust)	control	invariant	if	large	enough
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Transient	Behavior	– Example:	presets	and	control	invariance
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Transient	Behavior	– FCS	Stabilizability:	Theorem	and	Corollary

Theorem: global	and	robust	set stabilizability
Let	𝑢 ∈ 𝑉" − 𝐵,	then	∃𝑢 ∈ 𝑈J s.t.

Γ 𝑥F − max Γ 𝑥 , M
N�
+ 𝑏 < −𝑏

Corollary: set	convergence
There	exists	a	sequence	𝑢Q, 𝑢M, … , 𝑢S, … ∈ 𝑈J s.t.

lim
S→V

	𝑥S ∈ 𝑉W

The	Lyapunov function	can	be	decreased	every	time	step	by	−𝑏 until	the	level	 X
Y�

The	control	error	converges	to	𝑉W
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Transient	Behavior	– CCS	Stabilizability:	Theorem	and	Corollary

Theorem: global	and	robust	stabilizability
Let	𝑢 ∈ 𝑉" − 𝐵,	then	∃𝑢 ∈ 𝑈W s.t.

Γ 𝑥F − max Γ 𝑥 , 𝑏 < −𝑏

Corollary: convergence	to	origin
There	exists	a	sequence	𝑢Q, 𝑢M, … , 𝑢S, … ∈ 𝑈J s.t.

lim
S→V

	𝑥S ∈ 0

The	Lyapunov function	can	be	decreased	every	time	step	by	−𝑏 until	the	level	 X
Y�

The	control	error	converges	to	origin

The	CCS	system	inherits	the	FCS	properties	(without	lower	bound)
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Transient	Behavior	– Robust	Lyapunov-based	MPC

Constraint	Finite	Time	Optimal	Control	(CFTOC)
• Enforce	stability	with	contraction	constraint	

CCS:	any	norm;	FCS:	specific	candidate	CLF
• Holds	for	any	cost	function
• Simplification	possible	for	horizon	N=1
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Transient	Behavior	– Example:	Parameter	Robustness
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Transient	Behavior	– Example:	Parameter	Robustness

Smaller	L by	factor	100 Larger	L by	factor	100Rated	parameters
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MPC	for	PM	Synchronous	Motor	Drives
Steady-State	Behavior

X.	Yong,	M.	Preindl „Smallest Control	Invariant	Set	and Error	Boundaries of FCS-MPC	for PMSM	,“	APEC,	2017
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Steady-State	Behavior	– Observations

CCS-MPC
• Convergences	to	origin
• Noise	introduces	(minor)	variations

FCS-MPC
• Candidate	Control	Lyapunov Function	(CLF)

provides	upper	bounds	on	flux,	i.e.	current,	ripple
• In	practice,	FCS-MPC	tends	to	do	better	than	predicted

if	error	is	(heavily)	penalized
especially	at	low	speed
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Steady-State	Behavior	– Control	Invariant	Sets

Definition	of	“steady-state”	for	FCS-MPC:
𝑥 ∈ 𝑉W

𝑉W can	be	constructed	by	3	rectangles
• Parametrized	with	height	ℎ
• Upper	bound	ℎ = Y�

Y defines	𝑉W
• Lower	bound	ℎ = Y�

\ closely	resembles
low	speed	control	error

Rotated	hexagon	is	not control	invariant	for	𝑥 ∉ 𝑉W
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Steady-State	Behavior	– Definitions

All	subsets	defined	by	 Y
�

\ ≤ ℎ ≤ Y�

Y are	control	invariant	
iff 𝑢 ∈ 𝐵 ^

Y +
Y�

_ 			⇔ reduced	back-EMF

ℎ ≤ Y�

\ 	, ω = 50 rad/s	 ℎ ≤ Yc Y�

Xdd 	, ω = 517 rad/s	 ℎ ≤ Y�

Y 	, ω = 577 rad/s	
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Steady-State	Behavior	– Computation	Complexity

CCS:	efficient	solvers,	e.g.	fast	gradient	with	warm	start	and	early	termination
FCS:
• Exploit	Lyapunov constraint	(𝑉W):	ignore	sequences	that	violate	constraint
• Branch-and-bound	(BnB):	ignore	if	sequence	exceeds	best	total	cost
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Optimization-based	Observers
Position	Sensorless

Y.	Sun	et.	al.	„ Unified	Wide	Speed	Range	IPM	Sensorless Scheme Using Nonlinear Optimization,“	TPEL,	2017
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Optimization-based	Observer	– Approach

MPC-Approach
• Define	control	problem	as	

cost	function	and	constraints
• Rely	on	optimization	tool	to	deliver	

expected	outcome

Optimization-based	observer
• Position/speed	estimation	as	optimization	problem
• Single	block	diagram	for	low	and	high	speed
• Remove	demodulation	and	filters
• Inherent	support	of	CCS	and	FCS	MPC
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Optimization-based	Observer	– Definitions

PMSM	dynamic	model	written	in	ɑβ

Implicit	function

with	estimates	�̂� = 𝜃j, 𝜔l m
and	estimation	error	�̃� = [𝜃p, 𝜔q]′

Instantaneous	and	independent	estimation	of	position	and	speed

where																																	to	simplify	the	analysis.



46 | Transcending	Disciplines,	Transforming	Lives,	Educating	Leaders

Strict	convexity	depends	on
• Parameters	(machine	type)
• Currents	𝑖%& and	perturbation	𝑖%&̇

Optimization-based	Observer	– Convexity

Theorem:	convergence
Let	𝑐̅ 0 be	a	strict	minimum	on	the	optimization	domain	𝐷y,	then	�̃�∗ = 0

Corollary:	strictly	convex	cost	function
Let	𝑐̅(�̃�) be	strictly	(pseudo)	convex	on	𝐷y,	then	�̃�∗ = 0
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Optimization-based	Observer	– Examples:	Convex	Regions	(gray)

IPMSM
400rpm

IPMSM
800rpm
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Optimization-based	Observer	– Optimization	Domain

Origin
• Simple	criterion	exists	for	strict	convexity

à Low	speed	requires	perturbation

Optimization	Domain
• Required	to	be	a	convex area	where	𝑐̅(�̃�) is	strictly	convex
• Identifies	an	accurate	lower	bound	for	the	domain	of	convergence

for	any	position	and	speed	sensorless

CCS-MPC	
perturbation
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Optimization-based	Observer	– Example:	Performance

Comparison	with	traditional	methods
• Similar	computation	complexity

(few	Newton	steps	required)
• Improved	settling	time	by	factor	40
• Similar	parameter	dependence

Position	error	in	transient	operation:
Top:	100rpm	à -100rpm

Bottom:	40%	à -40%	torque

Position	error	with	parameter	mismatch
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Novel	Topologies
State-of-Charge	Balancing

M.	Preindl „A	Battery Balancing Auxiliary Power	Module	with Predictive Control	for Electrified Transportation,“	TIE,	2017
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• Battery	stacks	
– Battery	cells	have	varying

parameters	(capacity,	etc.)
à Balancing	problem

– Unbalanced	strings
• Low	effective	capacity
• Exponential	lifetime	reduction
with	string	length

– Require	balancing	
power	electronics	and	control

51

Discharge Charge

Battery	Management:	Charge	Equalization	Problem
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• High-performance	redistributive	topologies
e.g. capacitive	exchange	element

• Require	active	balancing	links:
isolated	DC/DC	converters

• Typically	considered	too	expensive	for	EV
à use	dissipative	topologies

52

Battery	Management:	Redistributive	Topologies
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Add	functionality	to	balancing	hardware
• Integrate	auxiliary	power	module	(APM)

à supply	auxiliary	battery
• Replace	dedicated	auxiliary	

power	module	(APM)

Pack	has	(many)	high-voltage	cells	
and	one	isolated	low-voltage	cell

53

Battery	Management:	BB-APM
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• Battery	stack	model
�̇�(𝑡) = 𝐁𝑢(𝑡)

where	𝐁 = 𝐐�M𝐓𝐍 with	topology	matrix	𝐓 ∈ ℝ�×�	
• State	constraint	𝑥 ∈ [0,1]�

• Input	constraint	𝑢 ∈ 𝒰 = 𝑢 ∈ ℝ� 	𝐇𝑢 ≤ 𝐾}
• Balancing	problem:	

Find	𝑢 𝑡 ∈ 𝒰 and	time	τ ∈ ℝF s.t.

�̅� τ = 𝐋𝑥 τ = 𝐋𝑥 0 + 𝐋𝐁� 𝑢 𝑡 𝑑𝑡
�

Q
= 𝟎

where	𝐋 = 𝐈 − M
�
𝟏𝟏′

54

Battery	Management:	Charge	Equalization	Problem
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• BB-APM:	two	control	goals
– Balance	high	voltage	cells
– Charge	low	voltage	cell

• MPC	formulation

– With	reference	𝑟 = 0,… , 0,1 m,	known	disturbance	𝑤
– Cost	with	q-norm	and	weighting	factors:	𝑞�, 𝑞�, and	𝑟�.

55

Battery	Management:	BB-APM	Control
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Battery	Management:	Example
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Thank	you.

57


