Optimization-based Control and Estimation

Prof. Matthias Preindl

matthias.preindl@columbia.edu

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Columbia University in the City of New York

Ivy League Research University Main Campus located in Manhattan, Morningside Heights

School of Engineering and Applied Science

- ~ 140 faculty members
- ~ 2,000 graduate students
- ~ 1,500 undergraduate students

Department of Electrical Engineering

- 36 faculty members
- Only one working in power

MPLab

Matthias Preindl (PI)

matthias.preindl@columbia.edu

Motor Drives and Power Electronics Laboratory (MPLab)

- Founded 2016
- Located on Columbia main campus

<u>People</u>

- Laboratory members 4 PhD, 1 MSc students
- Co-supervision
 - 3 PhD students
 - 1 post-doc, 1 research associate
- Project-based members

Matthias Preindl (PI)

matthias.preindl@columbia.edu

Research

- Advanced control
 - Optimal control
 - Nonlinear control
 - Observers
- Power electronics
 - Wide-bandgap
 - High-frequency (MHz)

Applications

- Electric Vehicle Drivetrains
 - Traction drive systems
 - Energy storage systems
 - Power converters

Optimization-based Control and Estimation Introduction

Introduction

MPC Benefits

- Nonlinear Systems
- Multi-input multi-output
- Constraint handling

MPC Challenges

- "Classical" MPC stability theorem requires specific cost function, prediction horizon, and terminal constraint
- Convexity and computation efficiency
- Model accuracy

Observations

Virtual-flux model (λ_{dq} , $\lambda_{\alpha\beta}$)

- Any multiphase AFE and sinusoidal machines: IPMSM, SPMSM, RSM, IM
- No parameters in dynamic model

MPC schemes

- FCS preferable at low $f_s \rightarrow$ needs to detect ripple
- CCS preferable at high $f_s \rightarrow$ ripple is handed off to modulator

Tendency to use unconventional cost functions

• Incompatibility with MPC theory: stability and robustness

- Single block is not be best for everything
- Stability and robustness concepts for any cost function
- MPC concepts are applicable to estimation
- MPC enables new power electronic topologies

Model Predictive Torque Control using Virtual Fluxes Concept

Layout

Virtual flux λ space

- Compute λ with static (nonlinear) map
- Linear dynamic model without parameters
- Prediction is parameter **independent**

Setpoint calculation

- Separate dynamic control from choosing setponts
- Nonlinear map: torque \rightarrow current (or flux)

Regulation problem: $x \rightarrow 0$

- Tracking \rightarrow regulation problem
- Combine feedback and feedworward control

Model Predictive Torque Control using Virtual Fluxes Constrained MTPA

M. Preindl, S. Bolognani "Optimal State Ref. Computation with Constrained MTPA Criterion for PM Drives," TPEL, 2015

Model

Stator dynamics

$$\dot{\lambda}_{dq}(t) = -\omega J \lambda_{dq}(t) + \bar{\nu}_{dq}(t)$$

Current-flux map

$$\lambda_{dq}(t) = l \circ i_{dq}(t) \approx L i_{dq}(t) + \psi_{dq}$$

Torque equation

$$T = \frac{3}{2}p \ \mathfrak{i}_{d\, q}^{\prime} J \lambda_{d\, q} = \frac{3}{2}p \left(\psi + (L_d - L_q)\mathfrak{i}_d\right)\mathfrak{i}_q$$

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}; \qquad L = \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix}; \qquad \psi_{d\,q} = \begin{bmatrix} \psi \\ 0 \end{bmatrix};$$

Current constraint

$$i_{dq} \in \mathfrak{I} \stackrel{\scriptscriptstyle \mathsf{def}}{=} \left\{ i_{dq} \in \mathbb{R}^2 \, | \, \left\| i_{dq} \right\| \leqslant I_r \right\}$$

Voltage constraint

$$\bar{\nu}_{dq} \in \bar{\mathcal{V}} \stackrel{\mbox{\tiny def}}{=} \left\{ \bar{\nu}_{dq} \in \mathbb{R}^2 \, | \, \left\| \bar{\nu}_{dq} \right\| \leqslant \bar{\nu}_r \stackrel{\mbox{\tiny def}}{=} \rho_{\nu} \nu_r \right\}$$

Flux constraint

$$\lambda_{dq} \in \Lambda \stackrel{\text{\tiny def}}{=} \left\{ \lambda_{dq} \in \mathbb{R}^2 \, | \, |\omega| \| \lambda_{dq} \| \leqslant \bar{\nu}_r \right\}$$

Speed constraint

$$\frac{|\omega|}{\bar{\nu}_{r}} \leqslant \chi_{m} \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ll} \frac{1}{|\psi - L_{d}I_{r}|} & \text{if } \frac{\psi}{L_{d}} > I_{r}, \\ \infty & \text{otherwise.} \end{array} \right.$$

Definition: optimal states

Let i_{dq}^{\star} , λ_{dq}^{\star} be optimal if they produce T according to

```
 \begin{array}{l} \underset{i_{dq},\lambda_{dq}}{\text{minimize}} & \|i_{dq}\| \\ \text{subject to} & \|i_{dq}\| \leqslant I_r; \\ & \|\omega\| \|\lambda_{dq}\| \leqslant \bar{\nu}_r; \\ & \lambda_{dq} = Li_{dq} + \psi_{dq}; \\ & 3/2p \ i'_{dq} J\lambda_{dq} = T; \\ & |T| \leqslant T_m(\omega,\bar{\nu}_r) \end{array}
```

Nonconvex (NP-hard in general), possibly infeasible \rightarrow split into subproblems

Constrained MTPA – Example: Base Mode

Constrained MTPA – Example: Constant Power Mode

Constrained MTPA – Example: Reduced Power Mode

Constrained MTPA – T_m and T_i definitions

Definition: Maximum Torque

Definition: Intersection Torque

$$\begin{split} \mathsf{T}_{\mathfrak{m}} \stackrel{\text{def}}{=} \frac{3}{2} p & \max_{\substack{i_{dq}, \lambda_{dq}}} i'_{dq} J\lambda_{dq} \\ & \text{subject to} & \|i_{dq}\| \leqslant I_{r}; \\ & |\omega| \|\lambda_{dq}\| \leqslant \bar{\nu}_{r}; \\ & \lambda_{dq} = Li_{dq} + \psi_{dq} \end{split} \\ \end{split} \\ \begin{aligned} \mathsf{T}_{i} \stackrel{\text{def}}{=} \frac{3}{2} p & \max_{\substack{i_{dq}, \lambda_{dq}}} i'_{dq} J\lambda_{dq} \\ & \text{subject to} & \|i_{dq}\| \leqslant I_{r}; \\ & |\omega| \|\lambda_{dq}\| \leqslant \bar{\nu}_{r}; \\ & \lambda_{dq} = Li_{dq} + \psi_{dq}; \\ & i_{dq} \in \mathsf{MTPA} \end{split}$$

- Problems are feasible;
- Still non-convex but can be solved efficiently due to low dimension

Constrained MTPA – T_m and T_i with infinite max. speed

Constrained MTPA $- T_m$ and T_i with finite max. speed

(b) Torque vs. normalized speed

Constrained MTPA – Optimal Reference Computation

Find maximum torque T_m

Find intersection torque T_i

Find optimal states

- Locate trajectory (MTPA, $\partial \Lambda$) with T_m, T_i
- Compute $i_{dq,ref}$ (or $\lambda_{dq,ref}$)

Constrained MTPA – Example: Low and High Speed Operation

Find maximum torque

22 | Transcending Disciplines, Transforming Lives, Educating Leaders

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Rated \boldsymbol{L} and ψ_{dq} are typically suboptimal

Approach

- Optimize model **locally** (area enclosed by MTPA, $\partial \Lambda$, and ∂I)
- Using well known operating points (rated operation point, short circ. current)
 Parameters Mρ=K

$$\begin{bmatrix} \frac{3}{2}i_{qr} & \frac{3}{2}i_{dr}i_{qr} & -\frac{3}{2}i_{dr}i_{qr} & -T_{r} \\ i_{d} & i_{dr}^{2} - i_{qr}^{2} & i_{qr}^{2} - i_{dr}^{2} \\ 1 & i_{dr} & & \\ & & i_{qr} & \\ 1 & i_{dc} & & \end{bmatrix} \begin{bmatrix} \psi \\ L_{d} \\ L_{q} \\ 1/p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \lambda_{dr} \\ \lambda_{qr} \\ 0 \end{bmatrix}$$

• Least square solution: $\rho = \mathbf{M}^{+}\mathbf{K} \rightarrow \text{not a general model, e.g. } p \notin \mathbb{N}$

Constrained MTPA – Example: Model Refinement

Model (solid) and measured (dashed) characteristics

Model Predictive Torque Control using Virtual Fluxes Transient Behavior

M. Preindl "Robust Control Invariant Sets and Lyapunov-based MPC for IPM Sync. Motor Drives," TIE, 2016

Stator dynamic equation

$$\bar{\lambda}^+_{\alpha\beta} = \bar{\lambda}_{\alpha\beta} + \bar{v}_{\alpha\beta}$$

Where $ar\lambda_{lphaeta}=\Lambda_r^{-1}\lambda_{lphaeta}$ and $\Lambda_r=T_sv_c$

Transform tracking into **regulation problem**

with control error $x=ar\lambda_{lphaeta}-ar r_{lphaeta}$ and input $u=ar v_{lphaeta}-ar u$

The terminal voltage $\bar{v}_{lphaeta}$

- Feedback controller u : MPC
- Feedforward controller \overline{u} : adjustment for rotation

$$\bar{u} \approx -(\mathbf{I} - \mathbf{T}_{dq}^{-1}(T_s\omega))\bar{r}_{\alpha\beta}$$

 $x^+ = x + u$

Transient Behavior – Terminal Voltage and Input constraints

CCS and FCS input constraints (Note: $\mathcal{U}_s \stackrel{\text{\tiny def}}{=} \mathcal{V}_s - ar{u}$ does not contain origin)

Transient Behavior – FCS Candidate Lyapunov Function

Preset applied to sublevel set Ω_{γ}

The preset $O(\Omega_{\gamma})$ is the set of all states $x \in \mathbb{R}^2$ that can be driven to the Ω_{γ} by an admissible control input $u \in U$ $O_B(\Omega_{\gamma}) = \{x \in \mathbb{R}^2 \mid \exists u \in U : x + u \in \Omega_{\gamma}\}$

Robust control invariance

The set Ω_{γ} is said to be robust control invariant iff $\Omega_{\gamma} \subseteq O(\Omega_{\gamma}) - B$, where B is an arbitrarily small ball with radius b

Iff Ω_{γ} is robust control invariant $\exists u \in U$ s.t. $\Gamma(x^+) - \Gamma(x) < -b$.

Using FCS, the sublevel Ω_{γ} is (robust) control invariant if large enough

Transient Behavior – Example: presets and control invariance

Transient Behavior – FCS Stabilizability: Theorem and Corollary

Theorem: global and robust set stabilizability

Let $\overline{u} \in V_d - B$, then $\exists u \in U_s$ s.t.

$$\Gamma(x^+) - \max\left(\Gamma(x), \frac{1}{\sqrt{3}} + b\right) < -b$$

The Lyapunov function can be decreased every time step by -b until the level $\frac{1}{\sqrt{3}}$

Corollary: set convergence

There exists a sequence $u_0, u_1, \dots, u_k, \dots \in U_s$ s.t.

 $\lim_{k\to\infty} x_k \in V_{\rm d}$

The control error converges to $V_{\rm d}$

Transient Behavior – CCS Stabilizability: Theorem and Corollary

The CCS system inherits the FCS properties (without lower bound)

Theorem: global and robust stabilizability

Let $\overline{u} \in V_d - B$, then $\exists u \in U_d$ s.t.

$$\Gamma(x^+) - \max(\Gamma(x), b) < -b$$

The Lyapunov function can be decreased every time step by -b until the level $\frac{1}{\sqrt{3}}$

Corollary: convergence to origin

```
There exists a sequence u_0, u_1, \dots, u_k, \dots \in U_s s.t.
```

 $\lim_{k\to\infty} x_k \in 0$

The control error converges to origin

Transient Behavior – Robust Lyapunov-based MPC

Constraint Finite Time Optimal Control (CFTOC)

- Enforce stability with contraction constraint CCS: any norm; FCS: specific candidate CLF
- Holds for any cost function
- Simplification possible for horizon N=1

```
\begin{array}{l} \underset{u_0,\ldots,u_{N-1}}{\operatorname{minimize}} J(\cdot) \\ \text{subject to } x_{j+1} = x_j + u_j \\ u_j \in \mathcal{U}_j \stackrel{\text{def}}{=} \mathcal{V} - \bar{u}_j \\ \Gamma(x_0 + u_0) - \max\left(\Gamma(x_0), \bar{\gamma} + b\right) \leq -b \end{array}
```

 $\bar{\gamma} = \frac{1}{\sqrt{3}}$ for FCS; $\bar{\gamma} = 0$ for CCS

Transient Behavior – Example: Parameter Robustness

Transient Behavior – Example: Parameter Robustness

Smaller L by factor 100

Rated parameters

Larger L by factor 100

37 | Transcending Disciplines, Transforming Lives, Educating Leaders

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

MPC for PM Synchronous Motor Drives Steady-State Behavior

X. Yong, M. Preindl "Smallest Control Invariant Set and Error Boundaries of FCS-MPC for PMSM, "APEC, 2017

Steady-State Behavior – Observations

CCS-MPC

- Convergences to origin
- Noise introduces (minor) variations

FCS-MPC

- Candidate Control Lyapunov Function (CLF) provides upper bounds on flux, i.e. current, ripple
- In practice, FCS-MPC tends to do better than predicted × if error is (heavily) penalized especially at low speed

Steady-State Behavior – Control Invariant Sets

Definition of "steady-state" for FCS-MPC: $x \in V_d$

 $V_{\rm d}$ can be constructed by 3 rectangles

- Parametrized with height *h*
- Upper bound $h = \frac{\sqrt{3}}{3}$ defines V_d
- Lower bound $h = \frac{\sqrt{3}}{9}$ closely resembles low speed control error

All subsets defined by $\frac{\sqrt{3}}{9} \le h \le \frac{\sqrt{3}}{3}$ are control invariant iff $\overline{u} \in B\left(\frac{h}{3} + \frac{\sqrt{3}}{6}\right) \iff$ reduced back-EMF

Steady-State Behavior – Computation Complexity

CCS: efficient solvers, e.g. fast gradient with warm start and early termination **FCS:**

- Exploit Lyapunov constraint (V_d) : ignore sequences that violate constraint
- Branch-and-bound (BnB): ignore if sequence exceeds best total cost

Optimization-based Observers Position Sensorless

Y. Sun et. al. " Unified Wide Speed Range IPM Sensorless Scheme Using Nonlinear Optimization," TPEL, 2017

Optimization-based Observer – Approach

MPC-Approach

- Define control problem as cost function and constraints
- Rely on optimization tool to deliver expected outcome

Optimization-based observer

- Position/speed estimation as optimization problem
- Single block diagram for low and high speed
- Remove demodulation and filters
- Inherent support of CCS and FCS MPC

PMSM dynamic model written in αβ

 $\bar{v}_{\alpha\beta} = \left(L_{\Sigma}\mathbf{I} + L_{\Delta}\bar{\mathbf{P}}(2\theta)\right)\dot{i}_{\alpha\beta} + 2L_{\Delta}\omega\mathbf{J}\bar{\mathbf{P}}(2\theta)i_{\alpha\beta} + \omega\psi q(\theta)$

Implicit function

$$h(\hat{z}) = \left(L_{\Sigma}\mathbf{I} + L_{\Delta}\bar{\mathbf{P}}(2\hat{\theta})\right)\dot{i}_{\alpha\beta} + 2L_{\Delta}\hat{\omega}\mathbf{J}\bar{\mathbf{P}}(2\hat{\theta})i_{\alpha\beta} + \psi\hat{\omega}q(\hat{\theta}) - \bar{v}_{\alpha\beta}$$

with estimates $\hat{z} = \left[\hat{\theta}, \hat{\omega}\right]'$ and estimation error $\tilde{z} = [\tilde{\theta}, \tilde{\omega}]'$

Instantaneous and independent estimation of position and speed

$$\tilde{z}^{\star} = \underset{\tilde{z}\in\bar{\mathcal{D}}}{\arg\min \bar{c}(\tilde{z})} = \|\bar{h}(\tilde{z})\|^2$$

where $\bar{h}(\tilde{z}) = h(z - \tilde{z})$ to simplify the analysis.

Theorem: convergence

Let $\bar{c}(0)$ be a **strict minimum** on the optimization domain \overline{D} , then $\tilde{z}^* = 0$

Corollary: strictly convex cost function Let $\bar{c}(\tilde{z})$ be **strictly (pseudo) convex** on \overline{D} , then $\tilde{z}^* = 0$

Strict convexity depends on

- Parameters (machine type)
- Currents $i_{\alpha\beta}$ and perturbation $\dot{i_{\alpha\beta}}$

Optimization-based Observer – Examples: Convex Regions (gray)

Optimization-based Observer – Optimization Domain

Origin

Simple criterion exists for strict convexity
 → Low speed requires perturbation

Optimization Domain

- Required to be a **convex** area where $\bar{c}(\tilde{z})$ is **strictly convex**
- Identifies an accurate lower bound for the **domain of convergence** for any position and speed sensorless

Optimization-based Observer – Example: Performance

Comparison with traditional methods

- Similar computation complexity (few Newton steps required)
- Improved settling time by factor 40
- Similar parameter dependence

(b)

Novel Topologies State-of-Charge Balancing

M. Preindl "A Battery Balancing Auxiliary Power Module with Predictive Control for Electrified Transportation," TIE, 2017

Battery Management: Charge Equalization Problem

- Battery stacks
 - Battery cells have varying parameters (capacity, etc.)
 → Balancing problem
 - Unbalanced strings
 - Low effective capacity
 - Exponential lifetime reduction with string length
 - Require balancing power electronics and control

Battery Management: Redistributive Topologies

- High-performance redistributive topologies e.g. <u>capacitive exchange element</u>
- Require active balancing links: isolated DC/DC converters
- Typically considered too expensive for EV
 → use dissipative topologies

Add functionality to balancing hardware

- Integrate auxiliary power module (APM)
 → supply auxiliary battery
- Replace dedicated auxiliary power module (APM)

Pack has (many) high-voltage cells and one isolated low-voltage cell

Battery Management: Charge Equalization Problem

• Battery stack model

 $\dot{x}(t) = \mathbf{B}u(t)$

where $\mathbf{B} = \mathbf{Q}^{-1}\mathbf{T}\mathbf{N}$ with topology matrix $\mathbf{T} \in \mathbb{R}^{n \times m}$

- State constraint $x \in [0,1]^n$
- Input constraint $u \in \mathcal{U} = \{u \in \mathbb{R}^m | Hu \leq K\}$
- Balancing problem: Find $u(t) \in \mathcal{U}$ and time $\tau \in \mathbb{R}_+$ s.t.

$$\bar{x}(\tau) = \mathbf{L}x(\tau) = \mathbf{L}x(0) + \mathbf{L}\mathbf{B}\int_0^{\tau} u(t)dt = \mathbf{0}$$

where $\mathbf{L} = \mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}'$

Battery Management: BB-APM Control

- BB-APM: two control goals
 - Balance high voltage cells
 - Charge low voltage cell
- MPC formulation

$$\min_{u[k] \in \mathcal{U}} \left\| (q_b \bar{\mathbf{R}} + q_c \mathbf{R}) \tilde{x}[k+1] \right\|_q + \left\| r_l u[k] \right\|_q$$

subject to $\tilde{x}[k+1] = \mathbf{L} x[k+1] - r;$
 $x[k+1] = x[k] + \mathbf{B} u[k] + \mathbf{E} w[k] \in \mathcal{X}.$

- With reference r = [0, ..., 0, 1]', known disturbance w
- Cost with q-norm and weighting factors: q_b , q_c , and r_l .

Battery Management: Example

Thank you.

